
Exercices chapitre 3 – série 4

Enoncés

Exercice I. Réponse harmonique de circuits d'ordre 1

1) Il s'agit de déterminer la fonction de transfert $\underline{H}(j\omega) = \underline{U}_2/\underline{U}_1$, puis de tracer les asymptotes des diagrammes de Bode des circuits A), B) et C) ci-dessous.

Réponses (uniquement pour la fonction de transfert...).

Circuit A:
$$H(\omega) = \frac{1}{1+j\frac{\omega}{\omega_0}}$$
 et $\omega_0 = 3200 \ rad/s$

Circuit B:
$$H(\omega) = \frac{1+j\omega/\omega_2}{1+j\omega/\omega_1}$$
 et $\omega_1 = 606 \ rad/s$ $\omega_2 = 6670 \ rad/s$

Circuit C:
$$H(\omega) = K \frac{1+j\omega/\omega_1}{1+j\omega/\omega_2}$$
 et $K = 0.091$ et $\omega_1 = 625 \ rad/s$ et $\omega_2 = 6880 \ rad/s$

Exercice II.

Sans utiliser l'analyse précédente, mais en vous basant simplement sur les propriétés des composants, donnez une représentation approchée de chacun des circuits :

- à très basse fréquence.
- à très haute fréquence.

Est-ce cohérent avec les modules des fonctions de transfert que vous avez obtenues ?

Exercice III.

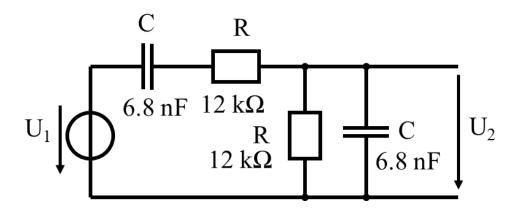
On reprend le circuit de l'exercice II-c et on suppose que la source de tension U_1 est donnée par $U_1(t) = 1 V * \sin\left(200 \pi t + \frac{\pi}{4}\right)$.

- a) Exprimez à l'aide de la fonction sinus la tension $U_2(t)$ aux bornes de la résistance R_2 .
- b) Même question si le signal d'entrée est donné par $U_1(t) = 1 V * \sin \left(2000 \pi t + \frac{\pi}{4} \right)$
- c) Puis si $U_1(t) = 1 V * \sin(20000 \pi t + \frac{\pi}{4})$
- d) Supposons à présent que la source de tension $U_1(t)$ soit donnée par $U_1(t) = 1 \ V * \cos \left(200 \ \pi \ t + \frac{\pi}{4}\right)$. Quelle sera la tension $U_2(t)$ aux bornes de la résistance R_2 ?

Réponses:

a)
$$U_2(t) = 0.1 * \sin\left(200 \pi t + \frac{\pi}{2}\right)$$

b)
$$U_2(t) = \sin\left(2000 \pi t + \frac{\pi}{2}\right)$$


c)
$$U_2(t) = \sin\left(20000 \pi t + \frac{\pi}{4}\right)$$

d)
$$U_2(t) = 0.1 \cos\left(200 \pi t + \frac{\pi}{2}\right)$$

Exercice IV.

On considère le circuit RC d'ordre 2 ci-dessous.

On souhaite déterminer la fonction de transfert $\underline{H}(j\omega) = \underline{U}_2/\underline{U}_1$, puis tracer les asymptotes des diagrammes de Bode.

1) Montrer que la fonction de transfert peut s'écrire :

$$\underline{H}(j\omega) = \frac{U_2}{U_1} = \frac{j\omega RC}{1 + 3j\omega RC + (j\omega)^2 R^2 C^2}$$

- 2) Factoriser le dénominateur sous la forme de produits $(1 + j \omega/\omega_c)$, et montrer qu'il existe 2 fréquences de coupure notée ω_1 et ω_2 .
- 3) Tracer le diagramme de Bode en amplitude et en phase.

Réponses à la question 2 : $\omega_1 \cong 4'680 \ rad \ / \ s$ et $\omega_2 \cong 32'090 \ rad \ / \ s$